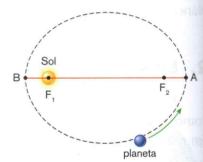

Em uma elipse destacamos dois eixos (maior de medida A,A, e menor de medida B,B,), um centro O dois focos F_1 e F_2 e a distância focal (c). A excentricidade de uma elipse (e), grandeza que mede o desvio em relação a uma circunferência, isto é, quanto a elipse fica mais "achatada", é dada por: $e = \frac{c}{a}$.

Podemos concluir que, quando e = 0, c necessariamente é igual a zero. Assim, os focos F₁ e F₂ são coincidentes $(F_1 = F_2)$. Logo, se obtêm a forma de uma circunferência.



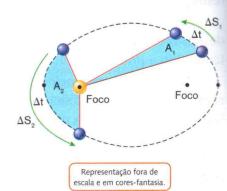
1ª lei de Kepler – lei das órbitas

O astrônomo dinamarquês Tycho Brahe possuía um castelo, o Uraniborg, na ilha de Hven, destinado a observações do céu. Obteve reconhecimento e patrocínio de Frederico II, rei da Dinamarca, e assim pôde construir seu observatório. Contava com instrumentos astronômicos como quadrantes, sextantes e relógios, com os quais obteve os dados mais precisos de sua época.

A órbita de Marte era o seu maior desafio. Aparentemente, os dados relativos ao planeta vermelho não caracterizavam uma circunferência. Tycho Brahe precisava de um matemático capaz de resolver o problema.

Johannes Kepler não mediu esforços para encontrar a forma real da órbita de Marte. Após muitos cálculos, o matemático alemão conseguiu descrever a órbita do planeta por meio de uma elipse matematicamente correta e generalizou sua descoberta ao afirmar que todos os planetas descreviam trajetórias elípticas ao redor do Sol e este, por sua vez, estaria localizado em um dos focos da elipse. Conhecemos esse enunciado como 1ª lei de Kepler.

O ponto A da trajetória mais afastado do Sol é o afélio, e o ponto B, mais próximo, é o periélio.


Representação fora de escala e em cores-fantasia

2ª lei de Kepler – lei das áreas

Na busca por um Universo harmônico, Kepler continuou procurando, por meio de cálculos exaustivos, novas relações entre o movimento dos planetas e a forma de suas órbitas e acabou enunciando uma nova lei (2ª lei de Kepler): o raio vetor (segmento imaginário que une o Sol ao planeta) "varre" áreas iguais em tempos iguais.

Se as áreas A_1 e A_2 forem iguais, o tempo que o planeta leva para percorrer os arcos de medidas ΔS_1 e ΔS_2 também será igual.

Portanto, foi possível concluir que as velocidades dos planetas são maiores quando eles estão mais perto do Sol, e menores quando estão mais longe.

