3ª lei de Kepler – lei dos períodos

Kepler também conseguiu estabelecer uma relação entre as diferentes velocidades dos planetas ao longo de suas órbitas e a geometria delas. No afélio, que é o ponto da órbita em que um planeta está mais afastado do Sol, os planetas tinham velocidade menor do que no periélio, que é o ponto da órbita em que um planeta está mais próximo do Sol, e isso precisava ser explicado.

Ele estava convicto de que o Sol era o responsável por essa variação da velocidade e sua hipótese talvez por estar influenciado pela leitura do livro De Magnete (1600), de William Gilbert (1544-1603), - era que o astro agia nos planetas pela ação do magnetismo. Mas ela foi invalidada pelos posteriores trabalhos de Isaac Newton sobre a gravitação.

De qualquer forma, em 15 de maio de 1618, Kepler concluiu que, tomados dois a dois o valor do período de revolução dos planetas (tempo necessário para que executem uma volta completa ao redor do Sol) elevado ao quadrado e dividido pelo valor dos semieixos maiores de suas órbitas elevado ao cubo, a proporção encontrada para ambos é a mesma. Ou seja:

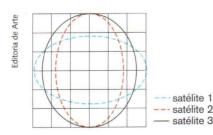
$$\frac{T_1^2}{R_1^3} = \frac{T_2^2}{R_2^3} = k$$

k é a constante de proporcionalidade;

T é o período de revolução (translação) do planeta;

R é a distância média do planteta ao Sol.

Com base nessa lei, pode-se concluir que quanto mais longe do Sol estiver o planeta, maior é o seu período e, portanto, maior a duração do seu ano. Veja as informações a seguir:


Dados orbitais dos planetas (Fonte: NSSDC).

AN ON					
Dados atuais	Planeta	Excentricidade da órbita	T (anos terrestres)	R (10 ⁶ km)	$\frac{T^2}{R^3}$
Planetas visíveis a olho nu, conhecidos por Kepler	Mercúrio	0,2056	0,241	57,91	2,99 · 10 ⁻²⁵
	Vênus	0,0067	0,615	108,20	2,99 · 10 ⁻²⁵
	Terra	0,0167	1,0	149,60	2,99 · 10 ⁻²⁵
	Marte	0,0935	1,881	227,94	2,99 · 10 ⁻²⁵
	Júpiter	0,0489	11,862	778,33	2,98 · 10 ⁻²⁵
	Saturno	0,0565	29,457	1429,40	2,97 · 10 ⁻²⁵
Descobertos por meio de telescópios potentes (portanto, posteriores a Kepler)	Urano	0,0457	84,011	2 870,99	2,98 · 10 ⁻²⁵
	Netuno	0,0113	164,79	4504,4	2,97 · 10 ⁻²⁵

Fonte de pesquisa: http://staff.on.br/maia/Intr_Astron_eAstrof_Curso_do_INPE.pdf>. Acesso em: 11 mar. 2016.

PENSE E RESPONDA

As órbitas de três satélites estão representadas na figura. Que satélite possui o maior período?

